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Abstract

1. The design-based and model-based approaches to frequentist statistical

inference rest on fundamentally different foundations. In the design-based

approach, inference relies on random sampling. In the model-based ap-

proach, inference relies on distributional assumptions. We compare the

approaches in a finite population spatial context.

2. We provide relevant background for the design-based and model-based

approaches and then study their performance using simulated data and real

data. The real data is from the United States Environmental Protection

Agency’s 2012 National Lakes Assessment. A variety of sample sizes,

location layouts, dependence structures, and response types are considered.

The population mean is the parameter of interest, and performance is

measured using statistics like bias, squared error, and interval coverage.

3. When studying the simulated and real data, we found that regardless of

the strength of spatial dependence in the data, the generalized random

tessellation stratified (GRTS) algorithm, which explicitly incorporates
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spatial locations into sampling, tends to outperform the simple random

sampling (SRS) algorithm, which does not explicitly incorporate spatial

locations into sampling. We also found that model-based inference tends

to outperform design-based inference, even for skewed data where the

model-based distributional assumptions are violated. The performance gap

between design-based inference and model-based inference is small when

GRTS samples are used but large when SRS samples are used, suggesting

that the sampling choice (whether to use GRTS or SRS) is most important

when performing design-based inference.

4. There are many benefits and drawbacks to the design-based and model-

based approaches for finite population spatial sampling and inference that

practitioners must consider when choosing between them. We provide rele-

vant background contextualizing each approach and study their properties

in a variety of scenarios, making recommendations for use based on the

practitioner’s goals.
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1. Introduction

When data cannot be collected for all units in a population (population units),

data are collected on a subset of the population units – this subset is called a

sample. There are two general approaches for using samples to make frequentist

statistical inferences about a population: design-based and model-based. In the



Spatial design-based vs model-based

design-based approach, inference relies on randomly assigning some population

units to be in the sample (random sampling). Alternatively, in the model-based

approach, inference relies on distributional assumptions about the underlying

data-generating stochastic process (superpopulation). Each paradigm has a deep

historical context (Sterba, 2009) and its own set of benefits and drawbacks (Brus

and De Gruijter, 1997; Hansen et al., 1983). In this manuscript, we compare

design-based and model-based approaches for finite population spatial sampling

and inference.

Spatial data are data that have some sort of spatial index (usually specified

via coordinates). De Gruijter and Ter Braak (1990) and Brus and DeGruijter

(1993) give early comparisons of design-based and model-based approaches for

spatial data, quashing the belief that design-based approaches could not be

used for spatially correlated data. Since then, there have been several general

comparisons between design-based and model-based approaches for spatial data

(Brus and De Gruijter, 1997; Brus, 2021; Ver Hoef, 2002; Ver Hoef, 2008). Cooper

(2006) reviews the two approaches in an ecological context before introducing a

“model-assisted” variance estimator that combines aspects from each approach. In

addition to Cooper (2006), there has been substantial research and development

into estimators that use both design-based and model-based principles (see e.g.,

Sterba (2009) and Cicchitelli and Montanari (2012), and for Bayesian approaches,

see Chan-Golston et al. (2020) and Hofman and Brus (2021)).

While comparisons between design-based and model-based approaches have

been studied in spatial contexts, our contribution is comparing design-based

approaches specifically built for spatial data to model-based approaches. Though

the broad comparisons we draw between design-based and model-based ap-

proaches generalize to finite and infinite populations, we focus on finite popu-

lations. A finite population contains a finite number of population units (we
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assume the finite number is known) – an example is lakes (treated as a whole

with the lake centroid representing location) in the conterminous United States.

An infinite population contains an infinite number of population units – an

example is locations within a single lake.

The rest of the manuscript is organized as follows. In Section 1.1, we introduce

and provide relevant background for design-based and model-based approaches

to finite population spatial sampling and inference. In Section 2, we describe

how we intend to compare performance of the approaches using simulated and

real data. The real data is from the United States Environmental Protection

Agency’s 2012 National Lakes Assessment (NLA) (USEPA, 2012). In Section 3,

we present analysis results for the simulated data and real data. And in Section

4, we end with a discussion and provide directions for future research.

1.1. Background

The design-based and model-based approaches incorporate randomness in

fundamentally different ways. In this section, we describe the role of randomness

for each approach and the subsequent effects on statistical inferences for spatial

data.

1.1.1. Comparing Design-Based and Model-Based Approaches

The design-based approach assumes the population is fixed. Randomness is

incorporated via the selection of population units according to a sampling design.

A sampling design assigns a probability of selection to each sample (subset of

population units). Some examples of commonly used sampling designs include

simple random sampling, stratified random sampling, and cluster sampling.

The inclusion probability of a population unit is calculated by summing each

sample’s probability of selection over all samples that contain the population unit.

Inclusion probabilities are often used when selecting samples and estimating

population parameters.
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When samples are chosen in a manner such that the layout of sampled units

reflects the layout of the population units, we call the resulting sample spatially

balanced. By “reflecting the layout of the population units,” we mean that if

population units are concentrated in specific areas, the units in the sample should

be concentrated in the same areas. Because spatially balanced samples reflect

the layout of the population units, they are not necessarily spread out in space

in some equidistant manner. One method of selecting spatially balanced samples

is the generalized random tessellation stratified (GRTS) algorithm (Stevens and

Olsen, 2004), which we discuss in more detail in Section 1.1.2. To quantify the

spatial balance of a sample, Stevens and Olsen (2004) proposed loss metrics

based on Voronoi polygons (i.e., Dirichlet Tessellations).

Fundamentally, the design-based approach combines the randomness of the

sampling design with the data collected via the sample to justify the estimation

and uncertainty quantification of fixed, unknown parameters of a population (e.g.,

a population mean). Treating the data as fixed and incorporating randomness

through the sampling design yields estimators having very few other assumptions.

Confidence intervals for these types of estimators are typically derived using

limiting arguments that incorporate all possible samples. Sample means, for

example, are asymptotically normal (Gaussian) by the central limit theorem

(under some assumptions). If we repeatedly select samples from the population,

then 95% of all 95% confidence intervals constructed from a procedure with

appropriate coverage will contain the true fixed population mean. Särndal et al.

(2003) and Lohr (2009) provide thorough reviews of the design-based approach.

The model-based approach assumes the population is a random realization of a

data-generating stochastic process. Randomness is formally incorporated through

distributional assumptions on this process. Strictly speaking, randomness need

not be incorporated through random sampling, though Diggle et al. (2010)
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warn against preferential sampling. Preferential sampling occurs when the

process generating the data locations and the process being modeled are not

independent of one another. To guard against preferential sampling, model-

based approaches can implement some form of random sampling. It is common,

however, for model-based approaches to sample non-randomly. When model-

based approaches do implement random sampling, the inclusion probabilities are

ignored when analyzing the sample (in contrast to the design-based approach,

which relies on these inclusion probabilities to analyze the sample).

Instead of estimating fixed, unknown population parameters, as in the design-

based approach, often the goal of model-based inference is to predict the value

of a realized variable. For example, suppose the realized mean of all population

units (the realized population mean) is the variable of interest. Instead of a fixed,

unknown mean, we are predicting the value of the mean, a random variable.

Prediction intervals are then derived using assumptions of the data-generating

stochastic process. If we repeatedly generate realizations from the same process

and select samples, then 95% of all 95% prediction intervals constructed from a

procedure with appropriate coverage will contain their respective realized means.

Cressie (1993) and Schabenberger and Gotway (2017) provide thorough reviews

of model-based approaches for spatial data. In Fig. 1, we provide a visual

comparison of the design-based and model-based approaches (Ver Hoef (2002)

and Brus (2021) provide similar figures). Fig. 1 contrasts the design-based

approach with a fixed population and random sampling to the model-based

approach with random populations and non-random sampling.

1.1.2. Spatially Balanced Design and Analysis

We previously mentioned that the design-based approach can be used to

select spatially balanced samples. Spatially balanced samples are useful because

parameter estimates from these samples tend to vary less (be more precise)
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Figure 1: A visual comparison of the design-based and model-based approaches. In the top row,
the design-based approach is highlighted. There is one fixed population with nine population
units and three random samples of size four (points circled are those sampled). The response
values at each site are fixed. In the bottom row, the model-based approach is highlighted.
There are three realizations of the same data-generating stochastic process that are all sampled
at the same four locations. The response values at each site are random.
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than parameter estimates from samples lacking spatial balance (Barabesi and

Franceschi, 2011; Benedetti et al., 2017; Grafström and Lundström, 2013; Robert-

son et al., 2013; Stevens and Olsen, 2004; Wang et al., 2013). The first spatially

balanced sampling algorithm to see widespread use was the generalized random

tessellation stratified (GRTS) algorithm (Stevens and Olsen, 2004). After the

GRTS algorithm was developed, several other spatially balanced sampling algo-

rithms emerged, including stratified sampling with compact geographical strata

(Walvoort et al., 2010), the local pivotal method (Grafström et al., 2012; Graf-

ström and Matei, 2018), spatially correlated Poisson sampling (Grafström, 2012),

balanced acceptance sampling (Robertson et al., 2013), within-sample-distance

sampling (Benedetti and Piersimoni, 2017), and Halton iterative partitioning

sampling (Robertson et al., 2018). In this manuscript, we select spatially bal-

anced samples using the GRTS algorithm because it is readily available in the

spsurvey R package (Dumelle et al., 2022b) and naturally accommodates finite

and infinite sampling frames, unequal inclusion probabilities, and replacement

units. Replacement units are additional population units that can be sampled

when a population unit originally selected can no longer be sampled. A couple

of reasons why an originally selected site can no longer be sampled include its

location being physically inaccessible or it is on private land that the researcher

does not have permission to access.

The GRTS algorithm selects samples by utilizing a particular mapping

between two-dimensional and one-dimensional space that preserves proximity

relationships. First, the bounding box of the domain is split up into four distinct,

equally sized squares called level-one cells. Each level-one cell is randomly

assigned a level-one address of 0, 1, 2, or 3. The set of level-one cells is denoted

by A1 and defined as A1 ≡ {a1 : a1 = 0, 1, 2, 3}. Within each level-one cell,

the inclusion probability for each population unit (which is pre-specified) is
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(a) Assignment of level-one cells to the spa-
tial domain. Grey circles indicate popula-
tion units.

(b) Assignment of level-two cells to the
spatial domain. Grey circles indicate pop-
ulation units.

Figure 2: Assignment of level-one and level-two cells to the spatial domain. In (a), each
level-one cells is randomly given a level-one address of 0, 1, 2, or 3. In (b), each level-two cell
within each level-one cell is randomly given a level-two address of 0, 1, 2, or 3.

summed, and if any of these sums are one or greater, a second level of cells

is added. Then each level-one cell is split into four distinct, equally sized

squares called level-two cells. Each level-two cell is randomly assigned a level-

two address of 0, 1, 2, or 3. The set of level-two cells is denoted by A2 and

defined as A2 ≡ {a1a2 : a1 = 0, 1, 2, 3; a2 = 0, 1, 2, 3}. The inclusion probabilities

within each level-two cell are summed, and if any of these sums are one or

greater, a third level of cells is added. This process continues for k steps,

until all level-k cells have inclusion probability sums less than one. Then

Ak ≡ {a1...ak : a1 = 0, 1, 2, 3; ...; ak = 0, 1, 2, 3}. Fig. 2 provides some intuition

regarding the assignment of level-one and level-two cells.

After determining Ak, the set is placed into hierarchical order. Hierar-

chical order is a numeric order that first sorts Ak by the level-one addresses

from smallest to largest, then sorts Ak by the level-two addresses from small-

est to largest, and so on. For example, A2 in hierarchical order is the set

{00, 01, 02, 03, 10, ..., 13, 20, ..., 23, 30, ..., 33}. Because hierarchical ordering sorts
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by level-one cells, then level-two cells, and so on, population units that have

similar hierarchical addresses tend to be nearby one another in space. Next, each

population unit is mapped to a one-dimensional line in hierarchical order where

each population unit’s inclusion probability equals its line-length. If a level-k

cell has multiple population units in it, they are randomly placed within the

cell’s respective line segment. A uniform random variable is then simulated in

[0, 1] and a systematic sample is selected on the line, yielding n sample points for

a sample size n. Each of these sample points falls on some population unit’s line

segment, and thus that population unit is selected in the sample. For further

details regarding the GRTS algorithm, see Stevens and Olsen (2004).

After selecting a sample and collecting data, unbiased estimates of population

means and totals can be obtained using the Horvitz-Thompson estimator (Horvitz

and Thompson, 1952). If τ is a population total, the Horvitz-Thompson estimator

for τ , denoted by τ̂ht, is given by

τ̂ht =
n∑

i=1
ziπ

−1
i , (1)

where zi is the value of the ith population unit in the sample, πi is the inclusion

probability of the ith population unit in the sample, and n is the sample size. An

estimate of the population mean is obtained by dividing τ̂ht by N , the number

of population units.

It is also important to quantify the uncertainty in τ̂ht. The Horvitz-Thompson

(Horvitz and Thompson, 1952) and Sen-Yates-Grundy (Sen, 1953; Yates and

Grundy, 1953) variance estimators are often used to estimate Var(τ̂ht), but

these estimators have two drawbacks. First, they rely on calculating πij , the

probability that population unit i and population unit j are both in the sample

– this quantity can be challenging if not impossible to calculate analytically for

GRTS samples. Second, these estimators tend to ignore the spatial locations of
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the population units. To address these two drawbacks simultaneously, Stevens

and Olsen (2003) proposed the local neighborhood variance estimator. The local

neighborhood variance estimator does not rely on πij and estimates the variance

of τ̂ conditional on the random properties of the GRTS sample – the idea being

that this conditioning should yield a more precise estimate of τ . They show that

the contribution from each sampled population unit to the overall variance is

dominated by local variation. Thus the local neighborhood variance estimator

is a weighted sum of variance estimates from each sampled population unit’s

local neighborhood. These local neighborhoods contain the sampled population

unit itself and its three nearest neighbors (among all other sampled population

units). For more details, see Stevens and Olsen (2003).

1.1.3. Finite Population Block Kriging

Finite population block kriging (FPBK) is a model-based approach that

expands the geostatistical Kriging framework to the finite population setting

(Ver Hoef, 2008). Instead of developing inference based on a specific sampling

design, we assume the data are generated by a spatial stochastic process. We

summarize some of the basic principles of FPBK next – see Ver Hoef (2008)

for technical details and see Higham et al. (2021b) for an extension to cases of

imperfect detection among population units. Let z ≡ {z(s1), z(s2), ..., z(sN )} be

an N × 1 response vector at locations s1, s2, . . . , sN that can be measured

at the N population units. Suppose we want to use a sample to predict some

linear function of the response variable, f(z) = b′z, where b′ is a 1 × N vector

of weights (e.g, the population mean is represented by a weights vector whose

elements all equal 1/N). Denoting quantities that are part of the sampled

population units with a subscript s and quantities that are part of the unsampled

population units with a subscript u, let
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zs

zu

 =

Xs

Xu

 β +

δs

δu

 , (2)

where Xs and Xu are the design matrices for the sampled and unsampled

population units, respectively, β is the parameter vector of fixed effects, and

δ ≡ [δs δu]T , where δs and δu are random errors for the sampled and unsampled

population units, respectively.

FPBK assumes δ in Equation (2) has mean-zero and a spatial dependence

structure that can be modeled using a covariance function. This covariance

function is commonly assumed to be non-negative, second-order stationary

(depending only on the separation vector (e.g., distance) between population

units), and isotropic (independent of direction) (Cressie, 1993). Henceforth,

it is implied that we have made these same assumptions regarding δ. Chiles

and Delfiner (1999), pp. 80-93 discuss covariance functions that are not second-

order stationary, not isotropic, or not either. A variety of flexible covariance

functions can be used to model δ (Cressie, 1993) – one example is the exponential

covariance function. Cressie (1993) provides a thorough list of spatial covariance

functions. The i, jth element of the exponential covariance matrix, cov(δ), is

cov(δi, δj) =


σ2

1 exp(−hi,j/φ) hi,j > 0

σ2
1 + σ2

2 hi,j = 0
, (3)

where σ2
1 is the variance parameter that quantifies the spatially dependent (cor-

related) variability, σ2
2 is the variance parameter the quantifies that spatially

independent (not correlated) variability, φ is the distance parameter that mea-

sures the distance-decay rate of the covariance, and hi,j is the Euclidean distance

between population units i and j. In geostatistical literature, σ2
1 is called the

partial sill, σ2
2 is called the nugget, and φ is called the range. We denote θ as the
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vector of covariance parameters that composes δ. In Equation 3, θ = {σ2
1 , σ2

2 , φ}.

The parameters in Equation 2 can be estimated using a variety of techniques,

but we focus on restricted maximum likelihood (REML) (Harville, 1977; Pat-

terson and Thompson, 1971; Wolfinger et al., 1994). REML is preferred over

maximum likelihood (ML) because ML estimates can be badly biased for small

sample sizes, due to the fact that ML makes no adjustment for the simultaneous

estimation of β and θ (Patterson and Thompson, 1971). Minus twice the REML

log-likelihood of the sampled sites is given by

ln |Σ| + (zs − Xsβ̃)T Σ−1
ss (zs − Xsβ̃) + ln |XT

s Σ−1
ss Xs| + (n − p) ln(2π), (4)

where β̃ = (XT
s Σ−1

ss Xs)−1XT
s Σ−1

ss zs and Σss is the covariance matrix of the

sampled sites. Minimizing Equation 4 yields θ̂reml, the REML estimates of

θ. Then β̂reml, the REML estimate of β, is given by (XT
s Σ̂−1

ss X)−1XT
s Σ̂−1

ss zs,

where Σ̂ss is Σss evaluated at θ̂reml.

With the model formulation in Equation 2, the best linear unbiased predictor

(BLUP) of f(b′z) and its prediction variance can be computed. While details

of the derivation are in Ver Hoef (2008), we note here that the predictor and

its variance are both moment-based, meaning that they do not rely on any

distributional assumptions. Distributional assumptions are used, however, when

constructing prediction intervals.

Other approaches, such as k-nearest-neighbors (Fix and Hodges, 1989; Ver

Hoef and Temesgen, 2013) and random forest (Breiman, 2001), among others,

could also be used to obtain predictions for a mean or total from finite population

spatial data. Compared to the k-nearest-neighbors and random forest approach,

we prefer FPBK because it is model-based and relies on theoretically-based

variance estimators leveraging the model’s spatial covariance structure, whereas

k-nearest-neighbors and random forests use ad-hoc variance estimators (Ver Hoef
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and Temesgen, 2013). Additionally, Ver Hoef and Temesgen (2013) compared

FPBK, k-nearest-neighbors, and random forest in a variety of spatial data

contexts, and FPBK tended to perform best.

2. Materials and Methods

In this section we describe how we used simulated and real data to investigate

performance between simple random sampling (SRS) and GRTS sampling as well

as performance between design-based (DB) and model-based (MB) inference. In

SRS and GRTS sampling, all population units had equal inclusion probabilities

and were selected without replacement. The important distinction between

SRS and GRTS is that SRS ignores spatial locations while sampling but GRTS

explicitly incorporates them. Together, the two sampling plans (SRS and GRTS)

combined with the two inference approaches (DB and MB) yielded four sampling-

inference combinations: SRS-DB, SRS-MB, GRTS-DB, and GRTS-MB. For

SRS-DB, the Horvitz-Thompson estimator (1) was used to estimate means and

the commonly-used SRS variance formula (Lohr, 2009; Särndal et al., 2003) was

used to estimate variances. This variance formula is given by

f [
∑n

i=1(zi − z̄)2]
n(n − 1) , (5)

where zi is the response value of the ith sampled population unit, z̄ is the mean

of all zi, n is the sample size, N is the population size, and f = (1 − n/N) (f is

often called the finite population correction factor). For GRTS-DB, the Horvitz-

Thompson estimator was used to estimate means and the local neighborhood

variance was used to estimate variances. For SRS-MB and GRTS-MB, FPBK

was used to estimate means and variances using restricted maximum likelihood.

SRS, GRTS sampling, and design-based inference were implemented using the

spsurvey R package (Dumelle et al., 2022b). FPBK was implemented using the



Spatial design-based vs model-based

sptotal R package (Higham et al., 2021a).

The simulated and real data were used for distinct objectives. The simulated

data was used to compare the sampling-inference combinations across many

realized populations (from the same data-generating stochastic process) and

random samples. The real data was used to compare the sampling-inference

combinations within a single realized population but across random samples.

With the simulated data, we were in control of the data-generating stochastic

process and the random sampling process. With the real data, we were only in

control of the random sampling process (which is typically the case in practice).

2.1. Simulated Data

We evaluated performance of the four sampling-inference combinations in

36 different simulation scenarios. The 36 scenarios resulted from the crossing of

three sample sizes, two location layouts (of the population units), two response

types, and three proportions of dependent random error (DRE). The three sample

sizes (n) were n = 50, n = 100, and n = 200. Samples were always selected from

a population size (N) of N = 900. The two location layouts were random and

gridded. Locations in the random layout were randomly generated inside the

unit square ([0, 1]× [0, 1]). Locations in the gridded layout were placed on a fixed,

equally spaced grid inside the unit square. The two response types were normal

and skewed. For the normal response type, the response was simulated using

mean-zero random errors with the exponential covariance (Equation 3) for three

proportions of dependent random error (DRE): 0% DRE, 50% DRE, and 90%

DRE. Recall the proportion of DRE is represented by σ2
1/(σ2

1 + σ2
2), where σ2

1

and σ2
2 are the DRE variance and independent random error (IRE) variance from

Equation 3, respectively. The total variance, σ2
1 +σ2

2 , was always 2. The distance

parameter was always
√

2/3, chosen so that the correlation in the DRE decayed

to nearly zero at
√

2, the largest possible distance between two population units
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(a) Histogram of a single realized popula-
tion for the normal response.

(b) Histogram of a single realized popula-
tion for the skewed response.

Figure 3: Histograms of single realized populations simulated for the normal and skewed
responses using the random layout and 50% DRE.

in the domain. For the skewed response type, the response was first simulated

using the same approach as for the normal response type, except that the total

variance was 0.6931 instead of 2. The response was then exponentiated, yielding

a skewed random variable whose total variance was 2. The skewed responses were

used to evaluate performance of the sampling-inference approaches for data that

were not normally distributed but were still estimated using REML, which relies

on a normal log-likelihood. Fig. 3 shows an example of a realized population

for the normal and skewed responses using the random location layout and 50%

DRE.

In each of the 36 simulation scenarios, there were 2000 independent simu-

lation trials. Within each trial, a population was simulated according to the

specifications of the particular simulation scenario (for the random location

layout, locations were simulated separately for each trial). Next, a random

SRS sample and a random GRTS sample were selected. Then, design-based

and model-based inferences were used to estimate (design-based) or predict

(model-based) the realized mean and construct 95% confidence (design-based) or
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95% prediction (model-based) intervals. With model-based inference, covariance

parameters and the realized mean were estimated (using REML) separately for

each trial. After all 2000 trials, we summarized the long-run performance of the

sampling-inference combination in each scenario by calculating mean bias, root-

mean-squared error, and interval coverage. Mean bias was taken as the average

deviation between each trial’s estimated (or predicted) mean (µ̂i) and its realized

mean (µi): 1
n

∑2000
i=1 (µ̂i −µi), where i indexes the simulation trials. Because each

trial had a different realized population, µi changed with i. Root-mean-squared

error was taken as the square root of the average squared deviation between each

trial’s estimated (or predicted) mean and its realized mean:
√

1
n

∑2000
i=1 (µ̂i − µi)2.

Interval coverage was taken as the proportion of simulation trials where the

realized mean was contained in its 95% confidence (or prediction) interval. These

intervals were constructed using the normal distribution – justification comes

from the asymptotic normality of means via the central limit theorem (under

some assumptions). Quantifying these metrics is important because together,

they give us an idea of the accuracy (mean bias), spread (RMSE), and validity

(interval coverage) of the sampling-inference combinations.

2.2. National Lakes Assessment Data

The United States Environmental Protection Agency (USEPA), states, and

tribes periodically conduct National Aquatic Research Surveys (NARS) to assess

the water quality of various bodies of water in the conterminous United States.

One component of NARS is the National Lakes Assessment (NLA), which

measures various aspects of lake health and water quality. We focus on analyzing

zooplankton multi-metric indices (ZMMI) and mercury concentrations in parts

per billion (Hg ppb) from the 2012 NLA. For ZMMI, data were collected at 1035

unique lakes. At less than 10% of lakes, two ZMMI replicates were collected.

These were averaged for the purposes of our study so that each lake had one
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measurement for ZMMI. For Hg ppb, data were collected at 995 unique lakes

(there were no replicates). The ZMMI and Hg ppb data are shown as spatial

maps and as histograms in Fig. 4. The ZMMI data tend to be highest near the

coasts, lowest in the Central United States, are relatively symmetric, and have a

mean of 55.05. The Hg ppb data tend to be highest in the Northeastern United

States, lowest elsewhere, are skewed, and have a mean of 103.16 ppb. Also in

Fig. 4 are separate spatial semivariograms for ZMMI and Hg ppb. The spatial

semivariogram quantifies the halved average squared differences (semivariance)

of responses whose separation (distance) falls within a separation class. The

spatial semivariance is closely related to the spatial covariance, and spatial

semivariograms are often used to gauge the strength of spatial dependence in

data. Both ZMMI and Hg ppb seem to have moderately strong spatial dependence

(Fig. 4), as the empirical semivariance increases steadily with distance (meaning

that observations near one another tend to be more similar than observations

far apart from one another).

We studied performance of the four sampling-inference combinations by

selecting 2000 SRS and GRTS samples of size n = 50, n = 100, and n = 200

from the realized ZMMI and Hg ppb populations and then analyzing the samples

using MB and DB inference. In total, there were six separate scenarios (two

responses crossed with three sample sizes). Within each SRS and GRTS sample,

design-based and model-based inferences were used to estimate or predict the

population mean and construct 95% coverage intervals. With model-based

inference, the exponential covariance was assumed, and covariance parameters

and the population mean were estimated using REML (separately for each SRS

and GRTS sample). We used the same evaluation metrics as for the simulated

data: mean bias, RMSE, and interval coverage. Mean bias was taken as the

average deviation between each sample’s estimated (or predicted) mean (µ̂i) and
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(a) Spatial map of the ZMMI population. (b) Spatial map of the Hg ppb population.

(c) Histogram of the ZMMI population. (d) Histogram of the Hg ppb population.

(e) Empirical semivariogram of the ZMMI
population.

(f) Empirical semivariogram of the Hg ppb
population.

Figure 4: Exploratory graphics representing populations for the zooplankton multi-metric
indices (ZMMI) and mercury concentration in parts per billion (Hg ppb) in the 2012 National
Lakes Assessment (NLA) data.
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the population mean (µ) (of ZMMI or Hg ppb): 1
n

∑2000
i=1 (µ̂i −µ), where i indexes

the simulation trials. Because each trial had the same realized population, µ did

not change with i (in contrast to the simulated data, where the realized mean

changed with i). Root-mean-squared error was taken as the square root of the

average squared deviation between each sample’s estimated (or predicted) mean

and its population mean:
√

1
n

∑2000
i=1 (µ̂i − µ)2. Interval coverage was taken as

the proportion of simulation trials where the population mean was contained

in its 95% confidence (or prediction) interval. These intervals were constructed

using the normal distribution.

3. Results

3.1. Simulated Data

Mean bias is nearly zero for all four sampling-inference combinations in all

36 scenarios, so we omit a more detailed summary of those results here. Tables

for mean bias in all 36 simulation scenarios are provided in the supporting

information.

We define the relative RMSE as a ratio with numerator given by the RMSE

for a sampling-inference combination and the denominator given by the RMSE

for SRS-DB. Relative RMSEs for the random location layout are provided in

Fig. 5. When there is no spatial covariance (Fig. 5, “DRE%: 0%”), the four

sampling-inference combinations have approximately equal RMSE. In these

scenarios, using GRTS sampling or model-based inference does not generally

increase efficiency compared to SRS-DB. When there is spatial covariance (Fig.

5, “DRE%: 50%” and “DRE%: 90%”), GRTS-MB tends to have the lowest

RMSE, followed by GRTS-DB, SRS-MB, and finally SRS-DB. As the strength

of spatial covariance increases, the gap in RMSE between SRS-DB and the other

sampling-inference combinations widens. Finally we note that when there is
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Figure 5: Simulated data relative RMSE for the four sampling-inference combinations and three
sample sizes in the random location layout. The rows indicate the proportion of dependent
error and the columns indicate the response type. The solid, black lines separate the sample
sizes.

spatial covariance, SRS-MB has a much lower RMSE than SRS-DB, suggesting

that the lack of efficiency from SRS is largely mitigated by model-based inference.

These RMSE conclusions are similar to those observed in the grid location

layout, so we omit a figure and discussion regarding the grid location layout here.

Tables for RMSE in all 36 simulation scenarios are provided in the supporting

information.

95% interval coverage for each of the four sampling-inference combinations

in the random location layout is shown in Fig. 6. Within each simulation

scenario, all sampling-inference combinations tend to have fairly similar interval
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coverage, though when n = 50 or n = 100, GRTS-DB coverage is usually a

few percentage points lower than the other combinations, which suggests that

the local neighborhood variance estimate may be slightly too small for small n.

Coverage in the normal response scenarios is usually near 95%, while coverage in

the skewed response scenarios usually varies from 90% to 95% but increases with

the sample size. At a sample size of 200, all four sampling-inference combinations

have approximately 95% interval coverage in both response scenarios for all DRE

proportions. These interval coverage conclusions are similar to those observed in

the grid location layout, so we omit a figure and discussion regarding the grid

location layout here. Tables for interval coverage in all 36 simulation scenarios

are provided in the supporting information.

3.2. National Lakes Assessment Data

Mean bias is nearly zero for all four sampling-inference combinations in all

six scenarios, so we omit a more detailed summary of those results here. Tables

for mean bias in all six simulation scenarios are provided in the supporting

information.

The relative RMSE of both ZMMI (symmetric response) and Hg ppb (skewed

response) for all four sampling-inference combinations are shown in Fig. 7. GRTS-

MB has the lowest RMSE, followed by GRTS-DB, SRS-MB, and then SRS-DB.

The difference in RMSE among GRTS-MB and GRTS-DB tends to be quite

small. When n = 50, SRS-MB RMSE is approximately evenly between SRS-DB

RMSE and GRTS-MB RMSE, but for the larger sample sizes (n = 100, n = 200),

SRS-MB RMSE is closer to GRTS-MB RMSE. Lastly we note that GRTS-MB,

GRTS-DB, and SRS-MB all have noticeably lower RMSE than SRS-DB. Tables

for RMSE in all six scenarios are provided in the supporting information.

95% interval coverage of both ZMMI and Hg ppb for all four sampling-

inference combinations is shown in Fig. 8. When n = 50, interval coverage
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Figure 6: Simulated data interval coverage for the four sampling-inference combinations and
three sample sizes in the random location layout. The rows indicate the proportion of dependent
error and the columns indicate the response type. The solid black lines separate the sample
sizes and the dashed black lines represent 95% coverage.

Figure 7: NLA data relative RMSE for the four sampling-inference combinations. The columns
indicate the response type. The solid, black lines separate the sample sizes.
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for both responses is too low, though interval coverage is higher for ZMMI

(symmetric response) than for Hg ppb (skewed response). When n = 100, ZMMI

interval coverage is approximately 95% except for GRTS-DB, which has coverage

around 92%, while Hg ppb interval coverage ranges from approximately 90%

(GRTS-DB) to 93% (GRTS-MB). When n = 200, ZMMI interval coverage is

approximately 95% while Hg ppb interval coverage ranges from approximately

93% (GRTS-DB) to 95% (GRTS-MB). As with the simulated data, coverages

for the NLA data tend to increase with the sample sizes, coverages tend to

be higher for symmetric responses than for skewed responses, and the local

neighborhood variance was slightly too small for small n, yielding slightly lower

interval coverages than the other sampling-inference combinations.

Recall that model-based inference defines interval coverage properties across

realized populations. With the simulated data, we evaluated interval coverage

across realized populations, but for the NLA data, we evaluated interval coverage

within a single realized population. We did find that model-based coverages

were similar to the design-based coverages, however, suggesting that for some

realized populations it is reasonable to heuristically view data from separate

random samples as being from approximately separate realized populations. But

generally, if model-based intervals constructed from many random samples of

a single realized population show improper coverage, this does not necessarily

imply a deficiency in model-based inference. Tables for interval coverage in all

six simulation scenarios are provided in the supporting information.

4. Discussion

The design-based and model-based approaches to frequentist statistical infer-

ence rest on fundamentally different foundations. Design-based approaches rely

on random sampling to estimate population parameters. Model-based approaches
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Figure 8: NLA data interval coverage for the four sampling-inference combinations. The
columns indicate the response type. The solid black lines separate the sample sizes and the
dashed black lines represent 95% coverage.

rely on distributional assumptions to predict realized values of a data-generating

stochastic process. Though model-based approaches do not rely on random

sampling, random sampling can still be beneficial as a way to guard against pref-

erential sampling. While design-based and model-based approaches have often

been compared in the literature from theoretical and analytical perspectives,

our contribution lies in studying them for finite population spatial data while

implementing GRTS sampling and the local neighborhood variance estimator.

Aside from the theoretical differences described throughout the manuscript, a

few analytical findings from the simulated and real data studies were particularly

notable. All sampling-inference combinations had approximately zero mean bias.

Independent of the inference approach, the GRTS samples yielded lower RMSE

than their SRS counterparts. Though GRTS-DB and GRTS-MB generally had

very similar RMSE, SRS-MB tended to have much lower RMSE than SRS-DB,

suggesting that the model-based inference mitigated much of the inefficiency in

RMSE from SRS. As the proportion of dependent random error in the simulated

data increased, SRS-MB, GRTS-DB, and GRTS-MB become increasingly more

efficient (lower RMSE) than SRS-DB. Interval coverage tended to be higher for

the symmetric responses than skewed responses and tended to increase with the
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sample size. At a sample size of n = 200, generally all interval coverages were

near the desired value of 95%.

There are several benefits and drawbacks of the design-based and model-based

approaches for finite population spatial sampling and inference. Some we have

discussed, but others we have not, and they are worthy of discussion. First, we

discuss advantages of the design-based approach. Design-based inference is often

computationally efficient, while model-based inference can be computationally

burdensome, especially for likelihood-based estimation methods like REML that

rely on the inverse of a covariance matrix. Design-based inference easily handles

binary data through a straightforward application of the Horvitz-Thompson

estimator. In contrast, analyzing binary data using model-based inference

generally requires a logistic mixed regression model, the parameters of which

can be difficult to estimate and interpret (Bolker et al., 2009). An advantage of

design-based inference is that interval coverage is valid (has the proper coverage

rate) as long as 1) the sample is sufficiently large to ensure the statistic’s sampling

distribution is approximately normal and 2) the variance estimator is consistent

(Brus and De Gruijter, 1997; Särndal et al., 2003). This is because with the

design-based approach, the sampling plan and inclusion probabilities are specified

directly by the researcher. An advantage of SRS-DB not previously mentioned

is that it is likely to be valid given the consistency of its variance estimator

(Särndal et al., 2003). With the model-based approach, however, interval coverage

is unlikely to be valid if the model assumptions made do not not accurately

reflect reality. Whether model assumptions accurately reflect reality can be a

challenging and sometimes impossible question to answer definitively.

Now, we discuss advantages of the model-based approach. The model-

based approach can more naturally quantify the relationship between covariates

(predictor variables) and the response variable than design-based approaches.
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Model-based inference also yields estimated spatial covariance parameters, which

help better understand the dependence structure of the process in study. Model

selection is also possible using model-based inference and criteria such as cross

validation, likelihood ratio tests, or AIC (Akaike, 1974). Model-based inference

is capable of more efficient small-area estimation than design-based inference

because model-based inference can leverage distributional assumptions in areas

with few observed population units. Model-based approaches also accommodate

unit-by-unit predictions at unobserved locations that can be used to construct

informative visualizations like smoothed maps. Brus and De Gruijter (1997)

provide a more thorough discussion regarding the benefits and drawbacks of the

two approaches. In short, when deciding whether the design-based or model-

based approach is more appropriate to implement, these benefits and drawbacks

should be considered alongside the particular goals of the study.

There are many extensions of this research worthy of future consideration that

include sampling with unequal inclusion probabilities, using different spatially

balanced sampling approaches (instead of GRTS), using different spatial data

configurations, using different spatial domains like stream networks (Ver Hoef

and Peterson, 2010), using different response or covariance structures, and using

spatial or external mean trends (which can be defined through covariates).
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Abstract

1. The design-based and model-based approaches to frequentist statistical

inference rest on fundamentally different foundations. In the design-based

approach, inference relies on random sampling. In the model-based ap-

proach, inference relies on distributional assumptions. We compare the

approaches in a finite population spatial context.

2. We provide relevant background for the design-based and model-based

approaches and then study their performance using simulated data and real

data. The real data is from the United States Environmental Protection

Agency’s 2012 National Lakes Assessment. A variety of sample sizes,

location layouts, dependence structures, and response types are considered.

The population mean is the parameter of interest, and performance is

measured using statistics like bias, squared error, and interval coverage.

3. When studying the simulated and real data, we found that regardless of

the strength of spatial dependence in the data, the generalized random

tessellation stratified (GRTS) algorithm, which explicitly incorporates
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spatial locations into sampling, tends to outperform the simple random

sampling (SRS) algorithm, which does not explicitly incorporate spatial

locations into sampling. We also found that model-based inference tends

to outperform design-based inference, even for skewed data where the

model-based distributional assumptions are violated. The performance gap

between design-based inference and model-based inference is small when

GRTS samples are used but large when SRS samples are used, suggesting

that the sampling choice (whether to use GRTS or SRS) is most important

when performing design-based inference.

4. There are many benefits and drawbacks to the design-based and model-

based approaches for finite population spatial sampling and inference that

practitioners must consider when choosing between them. We provide rele-

vant background contextualizing each approach and study their properties

in a variety of scenarios, making recommendations for use based on the

practitioner’s goals.

Keywords

Design-based inference; Finite population block kriging (FPBK); Generalized

random tessellation stratified (GRTS) algorithm; Local neighborhood variance

estimator; Model-based inference; Restricted maximum likelihood (REML) esti-

mation; Spatially balanced sampling; Spatial covariance

1. Introduction

When data cannot be collected for all units in a population (population units),

data are collected on a subset of the population units – this subset is called a

sample. There are two general approaches for using samples to make frequentist

statistical inferences about a population: design-based and model-based. In the
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design-based approach, inference relies on randomly assigning some population

units to be in the sample (random sampling). Alternatively, in the model-based

approach, inference relies on distributional assumptions about the underlying

data-generating stochastic process (superpopulation). Each paradigm has a deep

historical context (Sterba, 2009) and its own set of benefits and drawbacks (Brus

and De Gruijter, 1997; Hansen et al., 1983). In this manuscript, we compare

design-based and model-based approaches for finite population spatial sampling

and inference.

Spatial data are data that have some sort of spatial index (usually specified

via coordinates). De Gruijter and Ter Braak (1990) and Brus and DeGruijter

(1993) give early comparisons of design-based and model-based approaches for

spatial data, quashing the belief that design-based approaches could not be

used for spatially correlated data. Since then, there have been several general

comparisons between design-based and model-based approaches for spatial data

(Brus and De Gruijter, 1997; Brus, 2021; Ver Hoef, 2002; Ver Hoef, 2008). Cooper

(2006) reviews the two approaches in an ecological context before introducing a

“model-assisted” variance estimator that combines aspects from each approach. In

addition to Cooper (2006), there has been substantial research and development

into estimators that use both design-based and model-based principles (see e.g.,

Sterba (2009) and Cicchitelli and Montanari (2012), and for Bayesian approaches,

see Chan-Golston et al. (2020) and Hofman and Brus (2021)).

While comparisons between design-based and model-based approaches have

been studied in spatial contexts, our contribution is comparing design-based

approaches specifically built for spatial data to model-based approaches. Though

the broad comparisons we draw between design-based and model-based ap-

proaches generalize to finite and infinite populations, we focus on finite popu-

lations. A finite population contains a finite number of population units (we
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assume the finite number is known) – an example is lakes (treated as a whole

with the lake centroid representing location) in the conterminous United States.

An infinite population contains an infinite number of population units – an

example is locations within a single lake.

The rest of the manuscript is organized as follows. In Section 1.1, we introduce

and provide relevant background for design-based and model-based approaches

to finite population spatial sampling and inference. In Section 2, we describe

how we intend to compare performance of the approaches using simulated and

real data. The real data is from the United States Environmental Protection

Agency’s 2012 National Lakes Assessment (NLA) (USEPA, 2012). In Section 3,

we present analysis results for the simulated data and real data. And in Section

4, we end with a discussion and provide directions for future research.

1.1. Background

The design-based and model-based approaches incorporate randomness in

fundamentally different ways. In this section, we describe the role of randomness

for each approach and the subsequent effects on statistical inferences for spatial

data.

1.1.1. Comparing Design-Based and Model-Based Approaches

The design-based approach assumes the population is fixed. Randomness is

incorporated via the selection of population units according to a sampling design.

A sampling design assigns a probability of selection to each sample (subset of

population units). Some examples of commonly used sampling designs include

simple random sampling, stratified random sampling, and cluster sampling.

The inclusion probability of a population unit is calculated by summing each

sample’s probability of selection over all samples that contain the population unit.

Inclusion probabilities are often used when selecting samples and estimating

population parameters.
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When samples are chosen in a manner such that the layout of sampled units

reflects the layout of the population units, we call the resulting sample spatially

balanced. By “reflecting the layout of the population units,” we mean that if

population units are concentrated in specific areas, the units in the sample should

be concentrated in the same areas. Because spatially balanced samples reflect

the layout of the population units, they are not necessarily spread out in space

in some equidistant manner. One method of selecting spatially balanced samples

is the generalized random tessellation stratified (GRTS) algorithm (Stevens and

Olsen, 2004), which we discuss in more detail in Section 1.1.2. To quantify the

spatial balance of a sample, Stevens and Olsen (2004) proposed loss metrics

based on Voronoi polygons (i.e., Dirichlet Tessellations).

Fundamentally, the design-based approach combines the randomness of the

sampling design with the data collected via the sample to justify the estimation

and uncertainty quantification of fixed, unknown parameters of a population (e.g.,

a population mean). Treating the data as fixed and incorporating randomness

through the sampling design yields estimators having very few other assumptions.

Confidence intervals for these types of estimators are typically derived using

limiting arguments that incorporate all possible samples. Sample means, for

example, are asymptotically normal (Gaussian) by the central limit theorem

(under some assumptions). If we repeatedly select samples from the population,

then 95% of all 95% confidence intervals constructed from a procedure with

appropriate coverage will contain the true fixed population mean. Särndal et al.

(2003) and Lohr (2009) provide thorough reviews of the design-based approach.

The model-based approach assumes the population is a random realization of a

data-generating stochastic process. Randomness is formally incorporated through

distributional assumptions on this process. Strictly speaking, randomness need

not be incorporated through random sampling, though Diggle et al. (2010)
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warn against preferential sampling. Preferential sampling occurs when the

process generating the data locations and the process being modeled are not

independent of one another. To guard against preferential sampling, model-

based approaches can implement some form of random sampling. It is common,

however, for model-based approaches to sample non-randomly. When model-

based approaches do implement random sampling, the inclusion probabilities are

ignored when analyzing the sample (in contrast to the design-based approach,

which relies on these inclusion probabilities to analyze the sample).

Instead of estimating fixed, unknown population parameters, as in the design-

based approach, often the goal of model-based inference is to predict the value

of a realized variable. For example, suppose the realized mean of all population

units (the realized population mean) is the variable of interest. Instead of a fixed,

unknown mean, we are predicting the value of the mean, a random variable.

Prediction intervals are then derived using assumptions of the data-generating

stochastic process. If we repeatedly generate realizations from the same process

and select samples, then 95% of all 95% prediction intervals constructed from a

procedure with appropriate coverage will contain their respective realized means.

Cressie (1993) and Schabenberger and Gotway (2017) provide thorough reviews

of model-based approaches for spatial data. In Fig. 1, we provide a visual

comparison of the design-based and model-based approaches (Ver Hoef (2002)

and Brus (2021) provide similar figures). Fig. 1 contrasts the design-based

approach with a fixed population and random sampling to the model-based

approach with random populations and non-random sampling.

1.1.2. Spatially Balanced Design and Analysis

We previously mentioned that the design-based approach can be used to

select spatially balanced samples. Spatially balanced samples are useful because

parameter estimates from these samples tend to vary less (be more precise)
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Figure 1: A visual comparison of the design-based and model-based approaches. In the top row,
the design-based approach is highlighted. There is one fixed population with nine population
units and three random samples of size four (points circled are those sampled). The response
values at each site are fixed. In the bottom row, the model-based approach is highlighted.
There are three realizations of the same data-generating stochastic process that are all sampled
at the same four locations. The response values at each site are random.
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than parameter estimates from samples lacking spatial balance (Barabesi and

Franceschi, 2011; Benedetti et al., 2017; Grafström and Lundström, 2013; Robert-

son et al., 2013; Stevens and Olsen, 2004; Wang et al., 2013). The first spatially

balanced sampling algorithm to see widespread use was the generalized random

tessellation stratified (GRTS) algorithm (Stevens and Olsen, 2004). After the

GRTS algorithm was developed, several other spatially balanced sampling algo-

rithms emerged, including stratified sampling with compact geographical strata

(Walvoort et al., 2010), the local pivotal method (Grafström et al., 2012; Graf-

ström and Matei, 2018), spatially correlated Poisson sampling (Grafström, 2012),

balanced acceptance sampling (Robertson et al., 2013), within-sample-distance

sampling (Benedetti and Piersimoni, 2017), and Halton iterative partitioning

sampling (Robertson et al., 2018). In this manuscript, we select spatially bal-

anced samples using the GRTS algorithm because it is readily available in the

spsurvey R package (Dumelle et al., 2022b) and naturally accommodates finite

and infinite sampling frames, unequal inclusion probabilities, and replacement

units. Replacement units are additional population units that can be sampled

when a population unit originally selected can no longer be sampled. A couple

of reasons why an originally selected site can no longer be sampled include its

location being physically inaccessible or it is on private land that the researcher

does not have permission to access.

The GRTS algorithm selects samples by utilizing a particular mapping

between two-dimensional and one-dimensional space that preserves proximity

relationships. First, the bounding box of the domain is split up into four

distinct, equally sized squares called level-one cells. Each level-one cell is

randomly assigned a level-one address of 0, 1, 2, or 3. The set of level-one

cells is denoted by A1 and defined as A1 ≡ {a1 : a1 = 0, 1, 2, 3}. Within each

level-one cell, the inclusion probability for each population unit (which is pre-
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(a) Assignment of level-one cells to the spatial
domain. Grey circles indicate population units.

(b) Assignment of level-two cells to the spatial
domain. Grey circles indicate population units.

Figure 2: Assignment of level-one and level-two cells to the spatial domain. In (a), each
level-one cells is randomly given a level-one address of 0, 1, 2, or 3. In (b), each level-two cell
within each level-one cell is randomly given a level-two address of 0, 1, 2, or 3.

specified) is summed, and if any of these sums are one or greater, a second level

of cells is added. Then each level-one cell is split into four distinct, equally

sized squares called level-two cells. Each level-two cell is randomly assigned

a level-two address of 0, 1, 2, or 3. The set of level-two cells is denoted by

A2 and defined as A2 ≡ {a1a2 : a1 = 0, 1, 2, 3; a2 = 0, 1, 2, 3}. The inclusion

probabilities within each level-two cell are summed, and if any of these sums

are one or greater, a third level of cells is added. This process continues for k

steps, until all level-k cells have inclusion probability sums less than one. Then

Ak ≡ {a1...ak : a1 = 0, 1, 2, 3; ...; ak = 0, 1, 2, 3}. Fig. 2 provides some intuition

regarding the assignment of level-one and level-two cells.

After determining Ak, the set is placed into hierarchical order. Hierar-

chical order is a numeric order that first sorts Ak by the level-one addresses

from smallest to largest, then sorts Ak by the level-two addresses from small-

est to largest, and so on. For example, A2 in hierarchical order is the set

{00, 01, 02, 03, 10, ..., 13, 20, ..., 23, 30, ..., 33}. Because hierarchical ordering sorts

by level-one cells, then level-two cells, and so on, population units that have
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similar hierarchical addresses tend to be nearby one another in space. Next, each

population unit is mapped to a one-dimensional line in hierarchical order where

each population unit’s inclusion probability equals its line-length. If a level-k

cell has multiple population units in it, they are randomly placed within the

cell’s respective line segment. A uniform random variable is then simulated in

[0, 1] and a systematic sample is selected on the line, yielding n sample points for

a sample size n. Each of these sample points falls on some population unit’s line

segment, and thus that population unit is selected in the sample. For further

details regarding the GRTS algorithm, see Stevens and Olsen (2004).

After selecting a sample and collecting data, unbiased estimates of population

means and totals can be obtained using the Horvitz-Thompson estimator (Horvitz

and Thompson, 1952). If τ is a population total, the Horvitz-Thompson estimator

for τ , denoted by τ̂ht, is given by

τ̂ht =
n∑

i=1
ziπ

−1
i , (1)

where zi is the value of the ith population unit in the sample, πi is the inclusion

probability of the ith population unit in the sample, and n is the sample size. An

estimate of the population mean is obtained by dividing τ̂ht by N , the number

of population units.

It is also important to quantify the uncertainty in τ̂ht. The Horvitz-Thompson

(Horvitz and Thompson, 1952) and Sen-Yates-Grundy (Sen, 1953; Yates and

Grundy, 1953) variance estimators are often used to estimate Var(τ̂ht), but

these estimators have two drawbacks. First, they rely on calculating πij , the

probability that population unit i and population unit j are both in the sample

– this quantity can be challenging if not impossible to calculate analytically for

GRTS samples. Second, these estimators tend to ignore the spatial locations of

the population units. To address these two drawbacks simultaneously, Stevens
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and Olsen (2003) proposed the local neighborhood variance estimator. The local

neighborhood variance estimator does not rely on πij and estimates the variance

of τ̂ conditional on the random properties of the GRTS sample – the idea being

that this conditioning should yield a more precise estimate of τ . They show that

the contribution from each sampled population unit to the overall variance is

dominated by local variation. Thus the local neighborhood variance estimator

is a weighted sum of variance estimates from each sampled population unit’s

local neighborhood. These local neighborhoods contain the sampled population

unit itself and its three nearest neighbors (among all other sampled population

units). For more details, see Stevens and Olsen (2003).

1.1.3. Finite Population Block Kriging

Finite population block kriging (FPBK) is a model-based approach that

expands the geostatistical Kriging framework to the finite population setting

(Ver Hoef, 2008). Instead of developing inference based on a specific sampling

design, we assume the data are generated by a spatial stochastic process. We

summarize some of the basic principles of FPBK next – see Ver Hoef (2008)

for technical details and see Higham et al. (2021b) for an extension to cases of

imperfect detection among population units. Let z ≡ {z(s1), z(s2), ..., z(sN )} be

an N × 1 response vector at locations s1, s2, . . . , sN that can be measured

at the N population units. Suppose we want to use a sample to predict some

linear function of the response variable, f(z) = b′z, where b′ is a 1 × N vector

of weights (e.g, the population mean is represented by a weights vector whose

elements all equal 1/N). Denoting quantities that are part of the sampled

population units with a subscript s and quantities that are part of the unsampled

population units with a subscript u, let
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zs

zu

 =

Xs

Xu

 β +

δs

δu

 , (2)

where Xs and Xu are the design matrices for the sampled and unsampled

population units, respectively, β is the parameter vector of fixed effects, and

δ ≡ [δs δu]T , where δs and δu are random errors for the sampled and unsampled

population units, respectively.

FPBK assumes δ in Equation (2) has mean-zero and a spatial dependence

structure that can be modeled using a covariance function. This covariance

function is commonly assumed to be non-negative, second-order stationary

(depending only on the separation vector (e.g., distance) between population

units), and isotropic (independent of direction) (Cressie, 1993). Henceforth,

it is implied that we have made these same assumptions regarding δ. Chiles

and Delfiner (1999), pp. 80-93 discuss covariance functions that are not second-

order stationary, not isotropic, or not either. A variety of flexible covariance

functions can be used to model δ (Cressie, 1993) – one example is the exponential

covariance function. Cressie (1993) provides a thorough list of spatial covariance

functions. The i, jth element of the exponential covariance matrix, cov(δ), is

cov(δi, δj) =


σ2

1 exp(−hi,j/ϕ) hi,j > 0

σ2
1 + σ2

2 hi,j = 0
, (3)

where σ2
1 is the variance parameter that quantifies the spatially dependent (cor-

related) variability, σ2
2 is the variance parameter the quantifies that spatially

independent (not correlated) variability, ϕ is the distance parameter that mea-

sures the distance-decay rate of the covariance, and hi,j is the Euclidean distance

between population units i and j. In geostatistical literature, σ2
1 is called the

partial sill, σ2
2 is called the nugget, and ϕ is called the range. We denote θ as the
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vector of covariance parameters that composes δ. In Equation 3, θ = {σ2
1 , σ2

2 , ϕ}.

The parameters in Equation 2 can be estimated using a variety of techniques,

but we focus on restricted maximum likelihood (REML) (Harville, 1977; Pat-

terson and Thompson, 1971; Wolfinger et al., 1994). REML is preferred over

maximum likelihood (ML) because ML estimates can be badly biased for small

sample sizes, due to the fact that ML makes no adjustment for the simultaneous

estimation of β and θ (Patterson and Thompson, 1971). Minus twice the REML

log-likelihood of the sampled sites is given by

ln |Σ| + (zs − Xsβ̃)T Σ−1
ss (zs − Xsβ̃) + ln |XT

s Σ−1
ss Xs| + (n − p) ln(2π), (4)

where β̃ = (XT
s Σ−1

ss Xs)−1XT
s Σ−1

ss zs and Σss is the covariance matrix of the

sampled sites. Minimizing Equation 4 yields θ̂reml, the REML estimates of

θ. Then β̂reml, the REML estimate of β, is given by (XT
s Σ̂−1

ss X)−1XT
s Σ̂−1

ss zs,

where Σ̂ss is Σss evaluated at θ̂reml.

With the model formulation in Equation 2, the best linear unbiased predictor

(BLUP) of f(b′z) and its prediction variance can be computed. While details

of the derivation are in Ver Hoef (2008), we note here that the predictor and

its variance are both moment-based, meaning that they do not rely on any

distributional assumptions. Distributional assumptions are used, however, when

constructing prediction intervals.

Other approaches, such as k-nearest-neighbors (Fix and Hodges, 1989; Ver

Hoef and Temesgen, 2013) and random forest (Breiman, 2001), among others,

could also be used to obtain predictions for a mean or total from finite population

spatial data. Compared to the k-nearest-neighbors and random forest approach,

we prefer FPBK because it is model-based and relies on theoretically-based

variance estimators leveraging the model’s spatial covariance structure, whereas

k-nearest-neighbors and random forests use ad-hoc variance estimators (Ver Hoef
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and Temesgen, 2013). Additionally, Ver Hoef and Temesgen (2013) compared

FPBK, k-nearest-neighbors, and random forest in a variety of spatial data

contexts, and FPBK tended to perform best.

2. Materials and Methods

In this section we describe how we used simulated and real data to investigate

performance between simple random sampling (SRS) and GRTS sampling as well

as performance between design-based (DB) and model-based (MB) inference. In

SRS and GRTS sampling, all population units had equal inclusion probabilities

and were selected without replacement. The important distinction between

SRS and GRTS is that SRS ignores spatial locations while sampling but GRTS

explicitly incorporates them. Together, the two sampling plans (SRS and GRTS)

combined with the two inference approaches (DB and MB) yielded four sampling-

inference combinations: SRS-DB, SRS-MB, GRTS-DB, and GRTS-MB. For

SRS-DB, the Horvitz-Thompson estimator (1) was used to estimate means and

the commonly-used SRS variance formula (Lohr, 2009; Särndal et al., 2003) was

used to estimate variances. This variance formula is given by

f [
∑n

i=1(zi − z̄)2]
n(n − 1) , (5)

where zi is the response value of the ith sampled population unit, z̄ is the mean

of all zi, n is the sample size, N is the population size, and f = (1 − n/N) (f is

often called the finite population correction factor). For GRTS-DB, the Horvitz-

Thompson estimator was used to estimate means and the local neighborhood

variance was used to estimate variances. For SRS-MB and GRTS-MB, FPBK

was used to estimate means and variances using restricted maximum likelihood.

SRS, GRTS sampling, and design-based inference were implemented using the

spsurvey R package (Dumelle et al., 2022b). FPBK was implemented using the
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sptotal R package (Higham et al., 2021a).

The simulated and real data were used for distinct objectives. The simulated

data was used to compare the sampling-inference combinations across many

realized populations (from the same data-generating stochastic process) and

random samples. The real data was used to compare the sampling-inference

combinations within a single realized population but across random samples.

With the simulated data, we were in control of the data-generating stochastic

process and the random sampling process. With the real data, we were only in

control of the random sampling process (which is typically the case in practice).

2.1. Simulated Data

We evaluated performance of the four sampling-inference combinations in

36 different simulation scenarios. The 36 scenarios resulted from the crossing of

three sample sizes, two location layouts (of the population units), two response

types, and three proportions of dependent random error (DRE). The three sample

sizes (n) were n = 50, n = 100, and n = 200. Samples were always selected from

a population size (N) of N = 900. The two location layouts were random and

gridded. Locations in the random layout were randomly generated inside the

unit square ([0, 1]× [0, 1]). Locations in the gridded layout were placed on a fixed,

equally spaced grid inside the unit square. The two response types were normal

and skewed. For the normal response type, the response was simulated using

mean-zero random errors with the exponential covariance (Equation 3) for three

proportions of dependent random error (DRE): 0% DRE, 50% DRE, and 90%

DRE. Recall the proportion of DRE is represented by σ2
1/(σ2

1 + σ2
2), where σ2

1

and σ2
2 are the DRE variance and independent random error (IRE) variance from

Equation 3, respectively. The total variance, σ2
1 +σ2

2 , was always 2. The distance

parameter was always
√

2/3, chosen so that the correlation in the DRE decayed

to nearly zero at
√

2, the largest possible distance between two population units
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(a) Histogram of a single realized population for
the normal response.

(b) Histogram of a single realized population for
the skewed response.

Figure 3: Histograms of single realized populations simulated for the normal and skewed
responses using the random layout and 50% DRE.

in the domain. For the skewed response type, the response was first simulated

using the same approach as for the normal response type, except that the total

variance was 0.6931 instead of 2. The response was then exponentiated, yielding

a skewed random variable whose total variance was 2. The skewed responses were

used to evaluate performance of the sampling-inference approaches for data that

were not normally distributed but were still estimated using REML, which relies

on a normal log-likelihood. Fig. 3 shows an example of a realized population

for the normal and skewed responses using the random location layout and 50%

DRE.

In each of the 36 simulation scenarios, there were 2000 independent simu-

lation trials. Within each trial, a population was simulated according to the

specifications of the particular simulation scenario (for the random location

layout, locations were simulated separately for each trial). Next, a random

SRS sample and a random GRTS sample were selected. Then, design-based

and model-based inferences were used to estimate (design-based) or predict

(model-based) the realized mean and construct 95% confidence (design-based) or

95% prediction (model-based) intervals. With model-based inference, covariance
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parameters and the realized mean were estimated (using REML) separately for

each trial. After all 2000 trials, we summarized the long-run performance of the

sampling-inference combination in each scenario by calculating mean bias, root-

mean-squared error, and interval coverage. Mean bias was taken as the average

deviation between each trial’s estimated (or predicted) mean (µ̂i) and its realized

mean (µi): 1
n

∑2000
i=1 (µ̂i −µi), where i indexes the simulation trials. Because each

trial had a different realized population, µi changed with i. Root-mean-squared

error was taken as the square root of the average squared deviation between each

trial’s estimated (or predicted) mean and its realized mean:
√

1
n

∑2000
i=1 (µ̂i − µi)2.

Interval coverage was taken as the proportion of simulation trials where the

realized mean was contained in its 95% confidence (or prediction) interval. These

intervals were constructed using the normal distribution – justification comes

from the asymptotic normality of means via the central limit theorem (under

some assumptions). Quantifying these metrics is important because together,

they give us an idea of the accuracy (mean bias), spread (RMSE), and validity

(interval coverage) of the sampling-inference combinations.

2.2. National Lakes Assessment Data

The United States Environmental Protection Agency (USEPA), states, and

tribes periodically conduct National Aquatic Research Surveys (NARS) to assess

the water quality of various bodies of water in the conterminous United States.

One component of NARS is the National Lakes Assessment (NLA), which

measures various aspects of lake health and water quality. We focus on analyzing

zooplankton multi-metric indices (ZMMI) and mercury concentrations in parts

per billion (Hg ppb) from the 2012 NLA. For ZMMI, data were collected at 1035

unique lakes. At less than 10% of lakes, two ZMMI replicates were collected.

These were averaged for the purposes of our study so that each lake had one

measurement for ZMMI. For Hg ppb, data were collected at 995 unique lakes
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(there were no replicates). The ZMMI and Hg ppb data are shown as spatial

maps and as histograms in Fig. 4. The ZMMI data tend to be highest near the

coasts, lowest in the Central United States, are relatively symmetric, and have a

mean of 55.05. The Hg ppb data tend to be highest in the Northeastern United

States, lowest elsewhere, are skewed, and have a mean of 103.16 ppb. Also in

Fig. 4 are separate spatial semivariograms for ZMMI and Hg ppb. The spatial

semivariogram quantifies the halved average squared differences (semivariance)

of responses whose separation (distance) falls within a separation class. The

spatial semivariance is closely related to the spatial covariance, and spatial

semivariograms are often used to gauge the strength of spatial dependence in

data. Both ZMMI and Hg ppb seem to have moderately strong spatial dependence

(Fig. 4), as the empirical semivariance increases steadily with distance (meaning

that observations near one another tend to be more similar than observations

far apart from one another).

We studied performance of the four sampling-inference combinations by

selecting 2000 SRS and GRTS samples of size n = 50, n = 100, and n = 200

from the realized ZMMI and Hg ppb populations and then analyzing the samples

using MB and DB inference. In total, there were six separate scenarios (two

responses crossed with three sample sizes). Within each SRS and GRTS sample,

design-based and model-based inferences were used to estimate or predict the

population mean and construct 95% coverage intervals. With model-based

inference, the exponential covariance was assumed, and covariance parameters

and the population mean were estimated using REML (separately for each SRS

and GRTS sample). We used the same evaluation metrics as for the simulated

data: mean bias, RMSE, and interval coverage. Mean bias was taken as the

average deviation between each sample’s estimated (or predicted) mean (µ̂i) and

the population mean (µ) (of ZMMI or Hg ppb): 1
n

∑2000
i=1 (µ̂i −µ), where i indexes
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(a) Spatial map of the ZMMI population. (b) Spatial map of the Hg ppb population.

(c) Histogram of the ZMMI population. (d) Histogram of the Hg ppb population.

(e) Empirical semivariogram of the ZMMI popu-
lation.

(f) Empirical semivariogram of the Hg ppb popu-
lation.

Figure 4: Exploratory graphics representing populations for the zooplankton multi-metric
indices (ZMMI) and mercury concentration in parts per billion (Hg ppb) in the 2012 National
Lakes Assessment (NLA) data.
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the simulation trials. Because each trial had the same realized population, µ did

not change with i (in contrast to the simulated data, where the realized mean

changed with i). Root-mean-squared error was taken as the square root of the

average squared deviation between each sample’s estimated (or predicted) mean

and its population mean:
√

1
n

∑2000
i=1 (µ̂i − µ)2. Interval coverage was taken as

the proportion of simulation trials where the population mean was contained

in its 95% confidence (or prediction) interval. These intervals were constructed

using the normal distribution.

3. Results

3.1. Simulated Data

Mean bias is nearly zero for all four sampling-inference combinations in all

36 scenarios, so we omit a more detailed summary of those results here. Tables

for mean bias in all 36 simulation scenarios are provided in the supporting

information.

We define the relative RMSE as a ratio with numerator given by the RMSE

for a sampling-inference combination and the denominator given by the RMSE

for SRS-DB. Relative RMSEs for the random location layout are provided in

Fig. 5. When there is no spatial covariance (Fig. 5, “DRE%: 0%”), the four

sampling-inference combinations have approximately equal RMSE. In these

scenarios, using GRTS sampling or model-based inference does not generally

increase efficiency compared to SRS-DB. When there is spatial covariance (Fig.

5, “DRE%: 50%” and “DRE%: 90%”), GRTS-MB tends to have the lowest

RMSE, followed by GRTS-DB, SRS-MB, and finally SRS-DB. As the strength

of spatial covariance increases, the gap in RMSE between SRS-DB and the other

sampling-inference combinations widens. Finally we note that when there is

spatial covariance, SRS-MB has a much lower RMSE than SRS-DB, suggesting
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Figure 5: Simulated data relative RMSE for the four sampling-inference combinations and three
sample sizes in the random location layout. The rows indicate the proportion of dependent
error and the columns indicate the response type. The solid, black lines separate the sample
sizes.

that the lack of efficiency from SRS is largely mitigated by model-based inference.

These RMSE conclusions are similar to those observed in the grid location

layout, so we omit a figure and discussion regarding the grid location layout here.

Tables for RMSE in all 36 simulation scenarios are provided in the supporting

information.

95% interval coverage for each of the four sampling-inference combinations

in the random location layout is shown in Fig. 6. Within each simulation

scenario, all sampling-inference combinations tend to have fairly similar interval

coverage, though when n = 50 or n = 100, GRTS-DB coverage is usually a
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few percentage points lower than the other combinations, which suggests that

the local neighborhood variance estimate may be slightly too small for small n.

Coverage in the normal response scenarios is usually near 95%, while coverage in

the skewed response scenarios usually varies from 90% to 95% but increases with

the sample size. At a sample size of 200, all four sampling-inference combinations

have approximately 95% interval coverage in both response scenarios for all DRE

proportions. These interval coverage conclusions are similar to those observed in

the grid location layout, so we omit a figure and discussion regarding the grid

location layout here. Tables for interval coverage in all 36 simulation scenarios

are provided in the supporting information.

3.2. National Lakes Assessment Data

Mean bias is nearly zero for all four sampling-inference combinations in all

six scenarios, so we omit a more detailed summary of those results here. Tables

for mean bias in all six simulation scenarios are provided in the supporting

information.

The relative RMSE of both ZMMI (symmetric response) and Hg ppb (skewed

response) for all four sampling-inference combinations are shown in Fig. 7. GRTS-

MB has the lowest RMSE, followed by GRTS-DB, SRS-MB, and then SRS-DB.

The difference in RMSE among GRTS-MB and GRTS-DB tends to be quite

small. When n = 50, SRS-MB RMSE is approximately evenly between SRS-DB

RMSE and GRTS-MB RMSE, but for the larger sample sizes (n = 100, n = 200),

SRS-MB RMSE is closer to GRTS-MB RMSE. Lastly we note that GRTS-MB,

GRTS-DB, and SRS-MB all have noticeably lower RMSE than SRS-DB. Tables

for RMSE in all six scenarios are provided in the supporting information.

95% interval coverage of both ZMMI and Hg ppb for all four sampling-

inference combinations is shown in Fig. 8. When n = 50, interval coverage

for both responses is too low, though interval coverage is higher for ZMMI
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Figure 6: Simulated data interval coverage for the four sampling-inference combinations and
three sample sizes in the random location layout. The rows indicate the proportion of dependent
error and the columns indicate the response type. The solid black lines separate the sample
sizes and the dashed black lines represent 95% coverage.

Figure 7: NLA data relative RMSE for the four sampling-inference combinations. The columns
indicate the response type. The solid, black lines separate the sample sizes.
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(symmetric response) than for Hg ppb (skewed response). When n = 100, ZMMI

interval coverage is approximately 95% except for GRTS-DB, which has coverage

around 92%, while Hg ppb interval coverage ranges from approximately 90%

(GRTS-DB) to 93% (GRTS-MB). When n = 200, ZMMI interval coverage is

approximately 95% while Hg ppb interval coverage ranges from approximately

93% (GRTS-DB) to 95% (GRTS-MB). As with the simulated data, coverages

for the NLA data tend to increase with the sample sizes, coverages tend to

be higher for symmetric responses than for skewed responses, and the local

neighborhood variance was slightly too small for small n, yielding slightly lower

interval coverages than the other sampling-inference combinations.

Recall that model-based inference defines interval coverage properties across

realized populations. With the simulated data, we evaluated interval coverage

across realized populations, but for the NLA data, we evaluated interval coverage

within a single realized population. We did find that model-based coverages

were similar to the design-based coverages, however, suggesting that for some

realized populations it is reasonable to heuristically view data from separate

random samples as being from approximately separate realized populations. But

generally, if model-based intervals constructed from many random samples of

a single realized population show improper coverage, this does not necessarily

imply a deficiency in model-based inference. Tables for interval coverage in all

six simulation scenarios are provided in the supporting information.

4. Discussion

The design-based and model-based approaches to frequentist statistical infer-

ence rest on fundamentally different foundations. Design-based approaches rely

on random sampling to estimate population parameters. Model-based approaches

rely on distributional assumptions to predict realized values of a data-generating
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Figure 8: NLA data interval coverage for the four sampling-inference combinations. The
columns indicate the response type. The solid black lines separate the sample sizes and the
dashed black lines represent 95% coverage.

stochastic process. Though model-based approaches do not rely on random

sampling, random sampling can still be beneficial as a way to guard against pref-

erential sampling. While design-based and model-based approaches have often

been compared in the literature from theoretical and analytical perspectives,

our contribution lies in studying them for finite population spatial data while

implementing GRTS sampling and the local neighborhood variance estimator.

Aside from the theoretical differences described throughout the manuscript, a

few analytical findings from the simulated and real data studies were particularly

notable. All sampling-inference combinations had approximately zero mean bias.

Independent of the inference approach, the GRTS samples yielded lower RMSE

than their SRS counterparts. Though GRTS-DB and GRTS-MB generally had

very similar RMSE, SRS-MB tended to have much lower RMSE than SRS-DB,

suggesting that the model-based inference mitigated much of the inefficiency in

RMSE from SRS. As the proportion of dependent random error in the simulated

data increased, SRS-MB, GRTS-DB, and GRTS-MB become increasingly more

efficient (lower RMSE) than SRS-DB. Interval coverage tended to be higher for

the symmetric responses than skewed responses and tended to increase with the

sample size. At a sample size of n = 200, generally all interval coverages were
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near the desired value of 95%.

There are several benefits and drawbacks of the design-based and model-based

approaches for finite population spatial sampling and inference. Some we have

discussed, but others we have not, and they are worthy of discussion. First, we

discuss advantages of the design-based approach. Design-based inference is often

computationally efficient, while model-based inference can be computationally

burdensome, especially for likelihood-based estimation methods like REML that

rely on the inverse of a covariance matrix. Design-based inference easily handles

binary data through a straightforward application of the Horvitz-Thompson

estimator. In contrast, analyzing binary data using model-based inference

generally requires a logistic mixed regression model, the parameters of which

can be difficult to estimate and interpret (Bolker et al., 2009). An advantage of

design-based inference is that interval coverage is valid (has the proper coverage

rate) as long as 1) the sample is sufficiently large to ensure the statistic’s sampling

distribution is approximately normal and 2) the variance estimator is consistent

(Brus and De Gruijter, 1997; Särndal et al., 2003). This is because with the

design-based approach, the sampling plan and inclusion probabilities are specified

directly by the researcher. An advantage of SRS-DB not previously mentioned

is that it is likely to be valid given the consistency of its variance estimator

(Särndal et al., 2003). With the model-based approach, however, interval coverage

is unlikely to be valid if the model assumptions made do not not accurately

reflect reality. Whether model assumptions accurately reflect reality can be a

challenging and sometimes impossible question to answer definitively.

Now, we discuss advantages of the model-based approach. The model-

based approach can more naturally quantify the relationship between covariates

(predictor variables) and the response variable than design-based approaches.

Model-based inference also yields estimated spatial covariance parameters, which
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help better understand the dependence structure of the process in study. Model

selection is also possible using model-based inference and criteria such as cross

validation, likelihood ratio tests, or AIC (Akaike, 1974). Model-based inference

is capable of more efficient small-area estimation than design-based inference

because model-based inference can leverage distributional assumptions in areas

with few observed population units. Model-based approaches also accommodate

unit-by-unit predictions at unobserved locations that can be used to construct

informative visualizations like smoothed maps. Brus and De Gruijter (1997)

provide a more thorough discussion regarding the benefits and drawbacks of the

two approaches. In short, when deciding whether the design-based or model-

based approach is more appropriate to implement, these benefits and drawbacks

should be considered alongside the particular goals of the study.

There are many extensions of this research worthy of future consideration that

include sampling with unequal inclusion probabilities, using different spatially

balanced sampling approaches (instead of GRTS), using different spatial data

configurations, using different spatial domains like stream networks (Ver Hoef

and Peterson, 2010), using different response or covariance structures, and using

spatial or external mean trends (which can be defined through covariates).

Acknowledgments

We would like to thank the editors and anonymous reviewers for their hard

work and time spent providing us with thoughtful, valuable feedback which

greatly improved the manuscript.

The views expressed in this manuscript are those of the authors and do not

necessarily represent the views or policies of the U.S. Environmental Protection

Agency or the National Oceanic and Atmospheric Administration. Any mention

of trade names, products, or services does not imply an endorsement by the



Spatial design-based vs model-based

U.S. government, the U.S. Environmental Protection Agency, or the National

Oceanic and Atmospheric Administration. The U.S. Environmental Protection

Agency and National Oceanic and Atmospheric Administration do not endorse

any commercial products, services, or enterprises.

Data and Code Availability

This manuscript has a supplementary R package that contains all of the

data, code, and figures used in its creation. All figures were created us-

ing the ggplot2 R package (Wickham, 2016). The supplementary R pack-

age is hosted on GitHub and archived on Zenodo. The Zenodo DOI link is

https://doi.org/10.5281/zenodo.6633805 (Dumelle et al., 2022a).

Conflict of Interest Statement

There are no conflicts of interest for any of the authors.

Author Contribution Statement

All authors conceived the ideas; All authors designed the methodology;

Michael Dumelle and Matt Higham performed the simulations and analyzed the

data; Michael Dumelle and Matt Higham led the writing of the manuscript; All

authors contributed critically to the drafts and gave final approval for publication.

Supporting Information

In the supporting information, we provide tables of summary statistics for

all 36 simulation scenarios and all six real data scenarios.



Spatial design-based vs model-based

References

Akaike, H., 1974. A new look at the statistical model identification. IEEE

Transactions on Automatic Control 19, 716–723.

Barabesi, L., Franceschi, S., 2011. Sampling properties of spatial total estimators

under tessellation stratified designs. Environmetrics 22, 271–278.

Benedetti, R., Piersimoni, F., 2017. A spatially balanced design with probability

function proportional to the within sample distance. Biometrical Journal 59,

1067–1084.

Benedetti, R., Piersimoni, F., Postiglione, P., 2017. Spatially balanced sampling:

A review and a reappraisal. International Statistical Review 85, 439–454.

Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens,

M.H.H., White, J.-S.S., 2009. Generalized linear mixed models: A practical

guide for ecology and evolution. Trends in ecology & evolution 24, 127–135.

Breiman, L., 2001. Random forests. Machine Learning 45, 5–32.

Brus, D., De Gruijter, J., 1997. Random sampling or geostatistical modelling?

Choosing between design-based and model-dased sampling strategies for soil

(with discussion). Geoderma 80, 1–44.

Brus, D.J., 2021. Statistical approaches for spatial sample survey: Persistent

misconceptions and new developments. European Journal of Soil Science 72,

686–703.

Brus, D.J., DeGruijter, J.J., 1993. Design-based versus model-based estimates

of spatial means: Theory and application in environmental soil science.

Environmetrics 4, 123–152.

Chan-Golston, A.M., Banerjee, S., Handcock, M.S., 2020. Bayesian inference for

finite populations under spatial process settings. Environmetrics 31, e2606.

Chiles, J.-P., Delfiner, P., 1999. Geostatistics: Modeling Spatial Uncertainty.

John Wiley & Sons, New York.



Spatial design-based vs model-based

Cicchitelli, G., Montanari, G.E., 2012. Model-assisted estimation of a spatial

population mean. International Statistical Review 80, 111–126.

Cooper, C., 2006. Sampling and variance estimation on continuous domains.

Environmetrics 17, 539–553.

Cressie, N., 1993. Statistics for spatial data. John Wiley & Sons.

De Gruijter, J., Ter Braak, C., 1990. Model-free estimation from spatial samples:

A reappraisal of classical sampling theory. Mathematical Geology 22, 407–415.

Diggle, P.J., Menezes, R., Su, T., 2010. Geostatistical inference under prefer-

ential sampling. Journal of the Royal Statistical Society: Series C (Applied

Statistics) 59, 191–232.

Dumelle, M., Higham, M., Hoef, J.M.V., Olsen, A.R., Madsen, L., 2022a.

USEPA/DvMsp: Publication release. Zenodo. doi:10.5281/zenodo.6633805

Dumelle, M., Kincaid, T.M., Olsen, A.R., Weber, M.H., 2022b. Spsurvey: Spatial

sampling design and analysis.

Fix, E., Hodges, J.L., 1989. Discriminatory analysis. Nonparametric discrim-

ination: Consistency properties. International Statistical Review/Revue

Internationale de Statistique 57, 238–247.

Grafström, A., 2012. Spatially correlated poisson sampling. Journal of Statistical

Planning and Inference 142, 139–147.

Grafström, A., Lundström, N.L., 2013. Why well spread probability samples are

balanced. Open Journal of Statistics 3, 36–41.

Grafström, A., Lundström, N.L., Schelin, L., 2012. Spatially balanced sampling

through the pivotal method. Biometrics 68, 514–520.

Grafström, A., Matei, A., 2018. Spatially balanced sampling of continuous

populations. Scandinavian Journal of Statistics 45, 792–805.

Hansen, M.H., Madow, W.G., Tepping, B.J., 1983. An evaluation of model-

dependent and probability-sampling inferences in sample surveys. Journal of

https://doi.org/10.5281/zenodo.6633805


Spatial design-based vs model-based

the American Statistical Association 78, 776–793.

Harville, D.A., 1977. Maximum likelihood approaches to variance component

estimation and to related problems. Journal of the American Statistical

Association 72, 320–338.

Higham, M., Ver Hoef, J., Frank, B., Dumelle, M., 2021a. Sptotal: Predicting

totals and weighted sums from spatial data.

Higham, M., Ver Hoef, J., Madsen, L., Aderman, A., 2021b. Adjusting a finite

population block kriging estimator for imperfect detection. Environmetrics

32, e2654.

Hofman, S.C., Brus, D., 2021. How many sampling points are needed to estimate

the mean nitrate-n content of agricultural fields? A geostatistical simulation

approach with uncertain variograms. Geoderma 385, 114816.

Horvitz, D.G., Thompson, D.J., 1952. A generalization of sampling without

replacement from a finite universe. Journal of the American Statistical

Association 47, 663–685.

Lohr, S.L., 2009. Sampling: Design and analysis. Nelson Education.

Patterson, H.D., Thompson, R., 1971. Recovery of inter-block information when

block sizes are unequal. Biometrika 58, 545–554.

Robertson, B., Brown, J., McDonald, T., Jaksons, P., 2013. BAS: Balanced

acceptance sampling of natural resources. Biometrics 69, 776–784.

Robertson, B., McDonald, T., Price, C., Brown, J., 2018. Halton iterative

partitioning: Spatially balanced sampling via partitioning. Environmental

and Ecological Statistics 25, 305–323.

Särndal, C.-E., Swensson, B., Wretman, J., 2003. Model assisted survey sampling.

Springer Science & Business Media.

Schabenberger, O., Gotway, C.A., 2017. Statistical methods for spatial data

analysis. CRC press.



Spatial design-based vs model-based

Sen, A.R., 1953. On the estimate of the variance in sampling with varying

probabilities. Journal of the Indian Society of Agricultural Statistics 5, 127.

Sterba, S.K., 2009. Alternative model-based and design-based frameworks for

inference from samples to populations: From polarization to integration.

Multivariate Behavioral Research 44, 711–740.

Stevens, D.L., Olsen, A.R., 2003. Variance estimation for spatially balanced

samples of environmental resources. Environmetrics 14, 593–610.

Stevens, D.L., Olsen, A.R., 2004. Spatially balanced sampling of natural re-

sources. Journal of the American Statistical Association 99, 262–278.

USEPA, 2012. National lakes assessment 2012. https://www.epa.gov/national-

aquatic-resource-surveys/national-results-and-regional-highlights-national-lakes-

assessment.

Ver Hoef, J., 2002. Sampling and geostatistics for spatial data. Ecoscience 9,

152–161.

Ver Hoef, J.M., 2008. Spatial methods for plot-based sampling of wildlife

populations. Environmental and Ecological Statistics 15, 3–13.

Ver Hoef, J.M., Peterson, E.E., 2010. A moving average approach for spatial

statistical models of stream networks. Journal of the American Statistical

Association 105, 6–18.

Ver Hoef, J.M., Temesgen, H., 2013. A comparison of the spatial linear model

to nearest neighbor (k-NN) methods for forestry applications. PlOS ONE 8,

e59129.

Walvoort, D.J., Brus, D., De Gruijter, J., 2010. An r package for spatial coverage

sampling and random sampling from compact geographical strata by k-means.

Computers & geosciences 36, 1261–1267.

Wang, J.-F., Jiang, C.-S., Hu, M.-G., Cao, Z.-D., Guo, Y.-S., Li, L.-F., Liu, T.-J.,

Meng, B., 2013. Design-based spatial sampling: Theory and implementation.



Spatial design-based vs model-based

Environmental Modelling & Software 40, 280–288.

Wickham, H., 2016. ggplot2: Elegant graphics for data analysis. Springer.

Wolfinger, R., Tobias, R., Sall, J., 1994. Computing gaussian likelihoods and

their derivatives for general linear mixed models. SIAM Journal on Scientific

Computing 15, 1294–1310.

Yates, F., Grundy, P.M., 1953. Selection without replacement from within strata

with probability proportional to size. Journal of the Royal Statistical Society:

Series B (Methodological) 15, 253–261.


	Keywords
	Introduction
	Background
	Comparing Design-Based and Model-Based Approaches
	Spatially Balanced Design and Analysis
	Finite Population Block Kriging


	Materials and Methods
	Simulated Data
	National Lakes Assessment Data

	Results
	Simulated Data
	National Lakes Assessment Data

	Discussion
	Acknowledgments
	Data and Code Availability
	Conflict of Interest Statement
	Author Contribution Statement
	Supporting Information
	References
	Keywords
	Introduction
	Background
	Comparing Design-Based and Model-Based Approaches
	Spatially Balanced Design and Analysis
	Finite Population Block Kriging


	Materials and Methods
	Simulated Data
	National Lakes Assessment Data

	Results
	Simulated Data
	National Lakes Assessment Data

	Discussion
	Acknowledgments
	Data and Code Availability
	Conflict of Interest Statement
	Author Contribution Statement
	Supporting Information
	References



